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Abstract
This paper addresses the problem of estimating
the depth of anesthesia in clinical practice
where many drugs are used in combination.
The aim of the project is to use pharmacokineti-
cally-derived data to predict episodes of light
anesthesia. The weighted linear combination of
anesthetic drug concentrations was computed
using a stochastic pharmacokinetic model. The
clinical definition of light anesthesia was based
on the hemodynamic consequences of auto-
nomic nervous system responses to surgical
stimuli. A rule-based expert system was used to
review anesthesia records to determine in-
stances of light anesthesia using hemodynamic
criteria. It was assumed that light anesthesia
was a direct consequence of the weighted linear
combination of drug concentrations in the pa-
tient's body that decreased below a certain
threshold. We augmented traditional two-
compartment models with a stochastic compo-
nent of anesthetics' concentrations to compen-
sate for interpatient pharmacokinetic and
pharmacodynamic variability.
A cohort of 532 clinical anesthesia cases was
examined and parameters of two compartment
pharmacokinetic models for 6 intravenously
administered anesthetic drugs (fentanyl, thio-
penthal, morphine, propofol, midazolam, keta-
mine) were estimated, as well as the parameters
for 2 inhalational anesthetics (N20 and isoflu-
rane). These parameters were then prospec-
tively applied to 22 cases that were not usedfor
parameter estimation, and the predictive ability
of the pharmacokinetic model was determined.
The goal of the study is the development of a
pharmacokinetic model that will be useful in
predicting light anesthesia in the clinically rele-

vant circumstance where many drugs are used
concurrently.

I Introduction
The aim of general anesthesia is to provide un-
consciousness, analgesia, amnesia and muscle
relaxation for patients undergoing surgical pro-
cedures. The degree (or 'Uepth') of anesthesia
should be adequate for the surgical stimulus.
Too deep a plane of anesthesia may produce
negative consequences, such as hypotension
and/or delayed emergence from anesthesia,
while an inappropriately light level of anesthesia
may result in the recall of intraoperative events
or potentially unfavorable hemodynamic events,
such as hypertension and tachycardia (which
represent autonomic nervous system responses
to surgical stimuli). No reliable monitor of
depth of anesthesia exists at present1. Thus, the
anesthesiologist continually titrates the quanti-
ties of anesthetic drugs administered to the pa-
tient according to experience and hemodynamic
responses. Typically, the anesthesiologist will
have to administer additional drug(s) at various
points during an anesthetic when noxious
stimuli in hemodynamic changes indicating
light anesthesia.

Mathematical pharmacokinetic models have
been developed in order to facilitate the mainte-
nance of an appropriate anesthetic level2. These
models are designed to achieve a target plasma
concentration reputed to be optimal for anes-
thetic effect. Unfortunately, these models are
commonly based on mono-drug therapy, which
is rare in clinical practice3. Another problem
with this approach is marked interindividual
pharmacokinetic/pharmacodynamic variability
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that complicates the maintenance of the desired
4plasma concentration .

This paper addresses the problem of estimating
parameters of pharmacokinetic models during
clinical anesthetics involving multiple drugs.
The estimation process optimizes the criterion
that is based on the output of the anesthesiology
expert system5. The expert system uses a set of
rules that determine the state of light anesthesia
from hemodynamic measurements, such as heart
rate and blood pressure. The case files were
generated using the CompuRecord® data ac-
quisition system [Anesthesia Recording, Inc.,
Pittsburgh, PA].

For this analysis, we divided anesthetic drugs
into two categories: intravenous and inhala-
tional. For each intravenous drug, we derived a
two-compartment model* , and for each inhala-
tional drug we determined a weighted constant
(of the alveolar concentration) that indicated
how much the anesthetic contributed to the
overall depth of anesthesia. We assumed that all
anesthetics contributed linearly (with different
weight factors) to the overall depth of anesthe-
sia, and that below a certain level (ZO), the depth
of anesthesia was considered to be 'light." This
level was arbitrarily selected to be Zo = 1.

The traditional two-compartment model6 was
augmented with a stochastic component that
allowed for interindividual variability in deter-
mining the drug concentration and effect. Thus,
the augmented model generates a probability
distribution of multiple drugs' effects.

2 Methods

2.1 Pharmacokinetic Modeling
We have devised an augmentation of the stan-
dard two-compartment model that includes the
random disturbance superimposed on drug con-
centrations in central and peripheral compart-
ments (Figure 1.). The mathematical model of

* The two-compartment model was used due to
the computational complexity of estimating
three-compartment model. Since the three-
compartment model is more standardl, we will
address the problem of parameter estimation of
the three compartment model in the future work.

the drug elimination can be expressed in the
canonical form as

dx = Axdt + Budt + aW
y = Cx

(1)

T

where x = [ xl x2 ]T is the vector of drug con-
centrations in the central and peripheral com-
partment respectively and A, B, S and C are
matrices given by:
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Figure 1. Stochastic two-compartment model

Stochastic systems theory states that7 the output
of a system described by the model (1) is a nor-

mally distributed random variable with the mean
m and variance a (defined as outputs of two
linear deterministic dynamical systems). These
two systems are defined by an 8-tuple of parame-
ters q = (all, a12, a2l, a22, cl, Yll, Y12, Y22)

where the matrix F a=p=['(1 Y12 -

LY12 'Y22
2

pears in the model for the variance ca

The dynamic behavior of a stochastic pharma-
cokinetic model is illustrated in Figure 2. (The
standard deviations in Figure 2 are exaggerated
to demonstrate their exponential increase. In
reality, gaussian distributions describing the
concentrations' distribution are much nar-

rower.). The physically acceptable range of
drugs' concentrations is anywhere between the
initially administered concentration and 0. In
Figure 2, physically unacceptable values for
drugs' concentrations are displayed in gray.

From the linearity of the stochastic model, we

derive the drug concentration Z as a random
variable with the gaussian distribution. The
mean of the concentration exponentially decay
towards 0, and the standard deviation exponen-

tially increases.
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Since the random variable Z is normally dis-

tributed with mean m = Ecim11 and standard

deviation a2 = zci2 i2, we can compute the
probability P{Z < ZO Z < Z(O), Z > O} in the
closed form using the error function (for brevity
this calculation is omited in this paper). This
probability is interpreted as the likelihood of
light anesthesia.

CVP = central venous pressure, HR = heart
rate)

We assumed that the state of light anesthesia, as
determined by the expert system, had to coincide
with light anesthesia predictions based on the
pharmacokinetic model. Using this premise, we
developed the estimation scheme shown in Fig-
ure 4.

Exponential
da iem of-mean
concentration

Exponentia
increasdoei
stindard deviation

Figure 4. Estimation of pharmacokinetic model
parameters

The expert system determines the state of light
anesthesia as a binary event,

Figure 2. The mean drug concentration (solid
line), the standard deviation (dashed lines) and
the level of light anesthesia

2.2 Expert System Assessment of
Light Anesthesia
In order to determine the state of light anesthe-
sia, we applied a rule-based expert system1 to a
cohort of cases. The state light anesthesia was
defined using physiologic measurements and
their trends. The program for examining case
files was designed using the temporal query lan-
guage QL that creates highly efficient C code.
The rules for light anesthesia are shown in Fig-
ure 3.

light_anesthesia =
trend condition MAP within 5 min increasing and
trend condition CVP within 5 min increasing and
OR
trend condition HR within 5 min increasing
OR
condition MAP high and
trend condition MAP within 5 min labile
OR
condition HR high and
trend condition HR within 5 min labile

Figure 3. Rule for light anesthesia.
(Abbreviations: MAP = mean arterial pressure,

E(light_anesthesia) E {O, 1}.

The pharmacokinetic model estimates the depth
of anesthesia (Z) as a weighted linear combina-
tion of drugs' concentrations in the central com-
partment:

Z= IC1xlI (2)
where ci is the (unknown) weight factor for drug
i, xi1 is the central compartment concentration
for drug i, and the summation is done over all
drugs. Each drug's concentration is considered
to be a normally distributed random variable
whose mean mi and standard deviation cvi are
given by the pharmacokinetic model. The prob-
ability that the patient has light anesthesia at the
present is considered to be the probability that
the estimated depth of anesthesia is below cer-
tain prescribed level ZO. We require that the
drug's concentration is within physically accept-
able boundaries (below the initially administered
concentration and above 0):

P(light_anesthesia) = P{Z < ZO Z < Z(O),Z > 0}
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where Z(0) is the linear weighted sum of the
initial concentration of all drugs that were ad-
ministered.

2.3 Optimization Criterion
The objective of the estimation process is to de-
termine the parameters of the pharmacokinetic
model such that the probability of light anesthe-
sia is numerically as close as possible to the bi-
nary event E(Iight_anesthesia) determined
(from hemodynamic criteria) by the expert sys-
tem. In particular, we define the optimization
criterion:

casc
end

J= I J(E p)2d,
all cases case

begin

(3)

where E = E(Iight_anesthesia) is the binary
event determined by the expert system, P =

P(Iight_anesthesia) is the probability that the
concentration of drugs is below the critical level
Z0. The summation is done over all cases and,
in each case, the squared difference between the
observed light anesthesia (E) and the estimated
light anesthesia (P) is integrated over the entire
duration of the case. The optimization criterion
J is a function of unknown parameters q of the
pharmacokinetic models, J = J(q). The objec-
tive of the optimization process is to find the
vector of parameters qmin that minimizes the
criterion J: Jmin = J(qmin).

Once the optimization criterion J (3) is formu-
lated, the parameters q are obtained through the
numerical minimization of J We have applied
the simplex method [91 mainly due to its nu-
merical robustness and ability to perform multi-
variate optimization without computing partial
derivatives.

3 Results: Predictive Value of the
Model
We have applied the estimation process on a
cohort of 532 relatively homogeneous cases
(limited to age range 13-40 years, ASA physical
status classification 1-2, and general anesthesia).
There were 8 different anesthetic drugs used in
these cases: N20, isoflurane, propofol, fentanyl,
midazolam, penthotal, morphine and ketamine.
The results of the estimation process are shown
in Tables 1 and 2.

Table 3 shows the comparison between redistri-
bution and elimination half-lives for some of the
intravenous drugs considered in this study with
standard textbook figures9. The half-life times
are computed as reciprocial values of eigenval-
ues of matrices A.

Drug Parameters |
A F c

Fentanyl -0098 0o010 [008r° o0021 0.004
L-0.234 0.214j L-0.02 0.0071

Morphine F-0.169 0.0111O 0.009 0.0251 0.55
L-0.018 0.002] 0.025 0.0041

Propofol [0227 -00481 0001 00201 0.003
[0.205 -0.026j L.005 0.007j

Midazolam 0.124 -0.0291 F0008 -0.0021 0.08
0.229 -0.049] L-o.o00 0.0061

Ketamine [0115 -0.0031 -0012 00571 0.32
Lo.948 -0.018 L08 -0018j

Thiopental -0.153 0.0281 [-0.012 -0.021 0.003
L-0.248 0.026] l-0.02 0.003j

Table 1. Estimated parameters for intravenous
drugs

Drug Parameters
c CT2

N20 0.34 0.040
Isoflurane 0.61 0.008 l

Table 2. Estimated parameters for inhalational
drugs

Drug Half life Half life
(from [10])

0tl/2(x _
t1/26 tl/2a 1 tI/2Q

Fentanyl 14 145 20 1180
Thiopental 10 33 6.8 60
Morphine 6 J 180

Table 3. Comparison of half-lives between the
parameters obtained in this paper and elsewhere

The derived pharmacokinetic models were ap-
plied prospectively to a set of 22 cases that were
not used in the parameter estimation process.
The expert system reported 104 instances of
light anesthesia and the pharmacokinetic model
predicted 68 instances. One possible source of
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error is that the pharmacokinetic parameters
were estimated using data from 30 minutes after
the start of the case until 30 minutes prior to the
end of the case. Thus, the "gain" parameters
may be set too low to handle the noxious stimu-
lation of tracheal intubation at the beginning of
the case and emergence from anesthesia at the
end of the case.

Expert system:
light anesthesia Prediction al-

V v. v - Ps . . . . . / .gorithm:
light anesthesia

xzx.sx . wEs~~~x
- -Xxx

Penthotal
Intubation administered

Figure 5. Case example: instances of light an-
esthesia reported by the expert system and by the
prediction algorithm

4 Conclusion
This paper addresses the problem of predicting
episodes of light anesthesia using a pharma-
cokinetic model for multiple drug anesthetics.
The method that we applied was a comparison
of light anesthesia (based on an expert system's
interpretation of patient hemodynamics) with
the estimated depth of anesthesia as computed in
the pharmacokinetic model. As a significant
departure from traditional two-compartment
pharmacokinetic models, we have devised a sto-
chastic model that computes the distribution of
drug concentrations. The advantage of this for-
mulation is that it offers a probability of light
anesthesia in addition to the estimated depth of
anesthesia. Initial results have yielded pharma-
cokinetic parameters that are similar to previ-
ously published results. Nevertheless, further
work will be required to confirm the clinical
usefulness of this method in a prospective fash-
ion.
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A The Stochastic Model
The solution of the stochastic differential equa-
tion (1) is a random variable whose probability
distribution density function W(t, x) is given as a
solution of the Fokker-Planck partial differential
equation (also known as forward Kolmogorov
equation). It is known in the theory of stochas-
tic differential equations7 that, for constant A, B
and E, the solution of equation (1) is the gaus-
sian distribution with density function

1 -I(m_x)TWl(m_x)
YX e2r

where the expectation m and the covariance
matrix V are defined through the model parame-
ters.
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